基于灰关联分析的隧道变形预测模型研究

宋文涛

(上海勘察设计研究院(集团)股份有限公司,上海 200438)

摘 要:随着城市建设的不断发展,城市运营期隧道安全保护区内邻近基坑施工越来越多,运营期隧道结构安全保护形势越发严峻。仅仅依靠获取每期监测数据进行运营期隧道安全状态分析还不足以令隧道管理人员完全掌握隧道安全状态,还必须对变形监测数据进行有目的的预测。本文研究了灰关联组合预测模型,使用某工程变形监测数据进行隧道变形模拟预测,将各单因素预测模型预测值及灰关联组合模型预测值与实测数据相对比,表明灰关联组合预测模型横向预测值及纵向预测值与实测数据能够较好地吻合,预测效果优于单因素预测模型,精度较高。

关键词:邻近基坑;施工影响;城市隧道;变形预测

中图分类号: U45 文献标识码: A 文章编号: 1006—7973 (2025) 05-0145-03

随着城市建设的不断发展,城市运营期隧道安全保护区内邻近基坑施工越来越多,且邻近基坑也呈现出更大、更深的发展趋势,基坑本身施工风险进一步增加,也使得运营期隧道结构安全保护形势越发严峻。

为保证邻近基坑施工影响下城市运营期隧道结构 安全,仅仅依靠获取每期监测数据进行运营期隧道安全 状态分析还不足以令隧道管理人员完全掌握隧道安全状 态,因此必须对变形监测数据进行有目的的预测,以便 使管理人员更好地掌握隧道结构安全动态。

许多国内外学者都对变形数据预报分析进行了深入的研究,如今,较为成熟和普遍的模型有:回归分析模型^[1]、时间序列模型^[2]、灰色系统模型^[3]、BP神经网络模型^[4]等。本文研究灰关联组合预测模型,使用某工程变形监测数据进行隧道变形模拟预测,并与实测数据相比较,验证灰关联组合预测模型的可行性与优越性。

1 灰关联组合模型的建立

邻近基坑施工影响下城市运营期隧道变形多模型组合预测方法是对同一预测对象的个预测模型进行分析,由各预测模型的权重值确定组合预测模型为^[5]:

$$Y(t) = \sum_{i=1}^{m} \omega_i y_i(t) \tag{1}$$

式中, $y_i(t)$ 为 t 时刻第 i 个预测模型预测值; ω_i 为第 i 个预测模型下的权重值[$i=1,2,\cdots,m$ 且 $\sum_{i=1}^m \omega_i=1$]。

1.1 确定各预测模型

监测对象的横向预测是对相关影响因素进行选择, 根据最小二乘拟合曲线特点,确定各影响因素的一元非 线性回归方程;监测对象纵向预测模型主要采用常用的 几种预测模型。

1.2 确定关联度和权重值

选取实测值序列X0为参考序列,记为

 $X0 = \{X0(k)|k = 1,2,\cdots,n\}$ 。单一模型预测值序列为比较序列,记为 $Xi = \{Xi(k)|k = 1,2,\cdots,n\}(i = 1,2,\cdots,m)$ 。

分别计算各单一模型预测值序列与实测值序列对 应元素的绝对差值,即:

$$\delta i(k) = |X0(k) - Xi(k)| \tag{2}$$

由式(1)和式(2)确定预测值序列和实测值序列 的最大误差和最小误差,即:

$$m = \min i \min k |X0(k) - Xi(k)| \tag{3}$$

$$M = \max i \max k |X0(k) - Xi(k)| \tag{4}$$

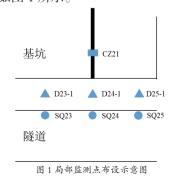
关联系数计算公式为:

$$\varepsilon i(k) = \frac{m + \rho \cdot M}{\delta i(k) + \rho \cdot M} \tag{5}$$

式中, ρ 为分辨系数,一般取 $\rho = 0.5$ 。

则灰关联度为:

$$\theta i = \theta(x0, xi) = \frac{1}{n} \sum_{k=1}^{n} X_i \, \varepsilon i(k) \tag{6}$$


则确定权重值为:

$$pi = \frac{\theta i}{\sum_{i=1}^{m} \theta_i} \tag{7}$$

2 监测数据预测

2.1 监测数据横向预测

本文以某基坑施工影响城市运营期隧道监测工程 为例,研究监测数据横向预测模型。该工程局部监测点 布设示意图如图 1 所示。

图中 SQ 点为隧道水平位移监测点, ZC 点为第一道钢筋混凝土支撑轴力监测点, D 点为地表沉降监测点。现假设 SQ24 被遮挡,以 D24-1、SQ23、ZC21 内在变形关系为基础,用这三者的变形数据监测数学函数,预测点 SQ24 隧道水平位移变化量。

随机选取连续的 15 期监测数据作为总体样本,实测数据如表 1 所示。把前 10 期监测数据作为建模样本,顾及最小二乘法曲线拟合,分别建立单因素影响下的各一元非线性回归方程。

去 1 冻烧 1E 即收测数据

所書 期数	表 1 连续 15 期监测数据									
(mm) (mm) (kN) (mm) (mm) 1 17 2.01 0.67 32.13 0.37 0.46 2 18 2.05 0.75 32.42 0.46 0.55 3 19 2.11 0.81 33.81 0.51 0.54 4 20 2.19 0.89 33.91 0.59 0.63 5 21 2.24 1.01 34.88 0.66 0.72 6 22 2.31 1.12 35.08 0.74 0.83 7 23 2.44 1.27 36.15 0.87 0.94 8 24 2.58 1.32 36.46 0.96 1.07 9 25 2.71 1.49 38.11 1.03 1.25 10 26 2.86 1.72 38.84 1.18 1.46 11 27 3.01 1.82 39.61 1.35 1.57 12 28	序長	祖日娄々	D24-1	SQ23	ZC21	SQ25	SQ24			
2 18 2.05 0.75 32.42 0.46 0.55 3 19 2.11 0.81 33.81 0.51 0.54 4 20 2.19 0.89 33.91 0.59 0.63 5 21 2.24 1.01 34.88 0.66 0.72 6 22 2.31 1.12 35.08 0.74 0.83 7 23 2.44 1.27 36.15 0.87 0.94 8 24 2.58 1.32 36.46 0.96 1.07 9 25 2.71 1.49 38.11 1.03 1.25 10 26 2.86 1.72 38.84 1.18 1.46 11 27 3.01 1.82 39.61 1.35 1.57 12 28 3.17 1.91 41.19 1.47 1.74	/39	70J&X	(mm)	(mm)	(KN)	(mm)	(mm)			
3 19 2.11 0.81 33.81 0.51 0.54 4 20 2.19 0.89 33.91 0.59 0.63 5 21 2.24 1.01 34.88 0.66 0.72 6 22 2.31 1.12 35.08 0.74 0.83 7 23 2.44 1.27 36.15 0.87 0.94 8 24 2.58 1.32 36.46 0.96 1.07 9 25 2.71 1.49 38.11 1.03 1.25 10 26 2.86 1.72 38.84 1.18 1.46 11 27 3.01 1.82 39.61 1.35 1.57 12 28 3.17 1.91 41.19 1.47 1.74	1	17	2.01	0.67	32.13	0.37	0.46			
4 20 2.19 0.89 33.91 0.59 0.63 5 21 2.24 1.01 34.88 0.66 0.72 6 22 2.31 1.12 35.08 0.74 0.83 7 23 2.44 1.27 36.15 0.87 0.94 8 24 2.58 1.32 36.46 0.96 1.07 9 25 2.71 1.49 38.11 1.03 1.25 10 26 2.86 1.72 38.84 1.18 1.46 11 27 3.01 1.82 39.61 1.35 1.57 12 28 3.17 1.91 41.19 1.47 1.74	2	18	2.05	0.75	32.42	0.46	0.55			
5 21 2.24 1.01 34.88 0.66 0.72 6 22 2.31 1.12 35.08 0.74 0.83 7 23 2.44 1.27 36.15 0.87 0.94 8 24 2.58 1.32 36.46 0.96 1.07 9 25 2.71 1.49 38.11 1.03 1.25 10 26 2.86 1.72 38.84 1.18 1.46 11 27 3.01 1.82 39.61 1.35 1.57 12 28 3.17 1.91 41.19 1.47 1.74	3	19	2.11	0.81	33.81	0.51	0.54			
6 22 2.31 1.12 35.08 0.74 0.83 7 23 2.44 1.27 36.15 0.87 0.94 8 24 2.58 1.32 36.46 0.96 1.07 9 25 2.71 1.49 38.11 1.03 1.25 10 26 2.86 1.72 38.84 1.18 1.46 11 27 3.01 1.82 39.61 1.35 1.57 12 28 3.17 1.91 41.19 1.47 1.74	4	20	2.19	0.89	33.91	0.59	0.63			
7 23 2.44 1.27 36.15 0.87 0.94 8 24 2.58 1.32 36.46 0.96 1.07 9 25 2.71 1.49 38.11 1.03 1.25 10 26 2.86 1.72 38.84 1.18 1.46 11 27 3.01 1.82 39.61 1.35 1.57 12 28 3.17 1.91 41.19 1.47 1.74	5	21	2.24	1.01	34.88	0.66	0.72			
8 24 2.58 1.32 36.46 0.96 1.07 9 25 2.71 1.49 38.11 1.03 1.25 10 26 2.86 1.72 38.84 1.18 1.46 11 27 3.01 1.82 39.61 1.35 1.57 12 28 3.17 1.91 41.19 1.47 1.74	6	22	2.31	1.12	35.08	0.74	0.83			
9 25 2.71 1.49 38.11 1.03 1.25 10 26 2.86 1.72 38.84 1.18 1.46 11 27 3.01 1.82 39.61 1.35 1.57 12 28 3.17 1.91 41.19 1.47 1.74	7	23	2.44	1.27	36.15	0.87	0.94			
10 26 2.86 1.72 38.84 1.18 1.46 11 27 3.01 1.82 39.61 1.35 1.57 12 28 3.17 1.91 41.19 1.47 1.74	8	24	2.58	1.32	36.46	0.96	1.07			
11 27 3.01 1.82 39.61 1.35 1.57 12 28 3.17 1.91 41.19 1.47 1.74	9	25	2.71	1.49	38.11	1.03	1.25			
12 28 3.17 1.91 41.19 1.47 1.74	10	26	2.86	1.72	38.84	1.18	1.46			
	11	27	3.01	1.82	39.61	1.35	1.57			
12 20 225 200 42.77 1.62 1.94	12	28	3.17	1.91	41.19	1.47	1.74			
13 29 3.33 2.09 42.77 1.02 1.84	13	29	3.35	2.09	42.77	1.62	1.84			
14 30 3.58 2.37 44.43 1.79 2.07	14	30	3.58	2.37	44.43	1.79	2.07			
15 31 3.71 2.53 46.08 1.96 2.29	15	31	3.71	2.53	46.08	1.96	2.29			

地表沉降监测点 D24-1:

$$Y_1 = 0.1029X_1^{2.41} \tag{8}$$

隧道水平位移监测点 SQ23:

$$Y_2 = 0.7376X_2^{1.22} \tag{9}$$

第一道钢筋混凝土支撑轴力监测点 ZC21:

$$Y_3 = 0.001469X_3^2 - 0.006223X_3 - 0.8326 \tag{10}$$

各单因素的关联度及权重值由式(6)、(7)求得,

见表 2:

表 2 各单因素的关联度及权重值

单因素	D24-1	SQ23	ZC21
关联度	0.43	0.74	0.72
权重值	0.21	0.40	0.39

根据各单因素权重值,可确定隧道水平位移监测点

SQ24 监测值的灰关联定权组合预测模型为:

$$Y = 0.21Y_1 + 0.4Y_2 + 0.39Y_3 \tag{11}$$

将式(8)(9)(10)代入,即为:

 $Y = 0.0216X_1^{2.41} + 0.2951X_2^{1.22} + 0.0006X_3^2 - 0.0024X_3 - 0.3245$ (12)

分别用各单因素预测模型及灰关联组合预测模型 预测监测点 SQ24 的 27~31 期隧道水平位移变化量,预 测结果如表 3、4 所示。

表 4 灰关联组合模型 (一)预测结果

期数	实测值 (mm)	预测值 (mm)	残差 (mm)	相对误差(%)
27	1.57	1.58	0.01	0.64
28	1.74	1.71	-0.03	1.72
29	1.84	1.86	0.05	2.72
30	2.07	2.11	0.04	1.93
31	2.29	2.26	-0.03	1.31

通过上表可以发现,灰关联组合预测模型预测值的 残差最大值为 0.05 mm,相对误差最大值为 2.72%,与 单因素预测模型预测值的残差及相对误差最大值相比都 较小,预测精度优于单因素预测模型。

由表 2 可知, 监测点 D24-1 的监测数据与监测点 SQ24 的监测数据关联度较差, 重新选取监测点 SQ25、SQ23、ZC21 的监测数据建立灰关联组合模型。

监测点 SQ25 的单因素预测一元非线性回归方程为:

$$Y_4 = 1.1551X_4^{1.03} \tag{13}$$

该模型各单因素的关联度及权重值如下表5所示。

表5组合模型(二)各单因素的关联度及权重值

单因素	SQ25	SQ23	ZC21
关联度	0.74	0.74	0.72
权重值	0.34	0.34	0.32

该灰关联组合预测模型为:

 $Y = 0.2507X_2^{1.22} + 0.0005X_3^2 - 0.0002X_3 - 0.2664 + 0.3927X_4^{1.03} \left(\ 14 \ \right)$

该灰关联组合预测模型预测结果如下表6所示。

表 6 组合模型 (二) 预测结果

序号	实测值 (mm)	预测值 (mm)	残差 (mm)	相对误差(%)
27	1.57	1.55	-0.02	1.27
28	1.74	1.75	0.01	0.57
29	1.84	1.84	0.03	1.63
30	2.07	2.05	-0.02	0.97
31	2.29	2.33	0.04	1.75

表 3 单因素预测模型预测结果

期	实测值	D24-1 预测值			SQ23 预测值			ZC21 预测值		
数	(mm)	预测值 (mm)	残差 (mm)	相对误差(%)	预测值 (mm)	残差 (mm)	相对误差(%)	预测值 (mm)	残差 (mm)	相对误差 (%)
27	1.57	1.50	-0.07	4.46	1.52	-0.05	3.18	1.54	-0.03	1.91
28	1.74	1.66	-0.08	4.60	1.66	-0.08	4.60	1.68	-0.06	3.45
29	1.84	1.76	-0.08	4.35	1.91	0.07	3.80	1.91	0.07	3.80
30	2.07	2.02	-0.05	2.42	2.11	0.04	1.93	2.11	0.04	1.93
31	2.29	2.22	-0.07	3.06	2.34	0.05	2.18	2.35	0.06	2.62

表 9 各模型预测结果统计

监测	实测值	回归:	回归分析 时间序列 灰色系统		分析 时间序列 灰色系统 BP 神经网络		圣网络	组合			
期数	(mm)	预测值 (mm)	残差(mm)	预测值 (mm)	残差 (mm)	预测值 (mm)	残差 (mm)	预测值 (mm)	残差(mm)	预测值 (mm)	残差 (mm)
39	6.42	6.53	-0.11	6.51	-0.09	6.33	0.09	6.34	0.08	6.46	-0.04
40	6.66	6.67	-0.12	6.45	0.10	6.66	-0.11	6.46	0.09	6.49	0.06
41	6.69	6.81	-0.12	6.61	0.08	6.62	0.07	6.61	0.08	6.64	0.05
42	6.90	6.94	-0.07	6.99	-0.12	6.76	0.11	6.98	-0.11	6.91	-0.04
43	7.16	7.06	0.10	7.07	0.09	7.09	0.07	7.11	0.05	7.09	0.07

通过表 6 可以发现,灰关联组合预测模型(二)预测值的残差最大值为 0.03 mm,相对误差最大值为 1.75%,小于灰关联组合预测模型(一)预测值的残差及相对误差。

将该组合模型预测值与监测点 SQ24 的实测数据相对比可以发现,组合模型(二)中各单因素关联度要大于组合模型一中各单因素关联度,权重值更平均,预测结果也更贴近实测数据。

2.2 监测数据纵向预测

随机选取连续的 16 期隧道水平位移监测点 SQ11 的监测数据作为总体样本,实测数据如表 7 所示。以前 11 期数据为建模样本,分别建立回归分析模型、时间 序列模型、灰色系统模型、BP 网络模型,以后 5 期数据作为预测样本,将预测数据与实测数据进行比较、分析。

选用双曲线趋势模型作为回归分析法预测模型, 其具体表达式为: $Y_1 = 12.21 - 221.53/t$,相关系数 R=0.975。选取 GM(1,1)模型作为灰色系统分析法预 测模型,模型评定结果为: C=0.2, P=1.02。时间序列 模型与 BP 神经网络模型在 MATLAB 软件中实现。

表7监测点 SQ11 连续 16 期实测数据

	-		
监测期数	累计位移 (mm)	监测期数	累计位移 (mm)
28	2.81	36	5.67
29	3.27	37	5.92
30	3.69	38	6.19
31	4.06	39	6.42
32	4.46	40	6.55
33	4.79	41	6.69
34	5.11	42	6.87
35	5.38	43	7.16

根据式(5)(6)(7),可解得上述四种预测模型权重值,如下表8所示:

表8四种预测模型权重值

模型	回归分析	时间序列	灰色系统	BP 神经网络
权重值	0.263	0.362	0.123	0.252

根据四种预测模型的权重值,建立灰关联组合预测模型。利用各预测模型对监测点 SQ11 的后 5 期监测数据进行预测,结果见表 9 所示。

由表 9 可以看出,灰关联组合预测模型预测值的 残差小于各单因素预测模型的残差。将各模型预测结果 与监测点 SQ11 的实测值进行对比可以发现,灰关联组 合预测模型的纵向预测精度优于单因素预测模型。经过 计算,灰关联组合预测模型预测值相对误差最大值为 0.98%,预测值和实测值最接近。在邻近基坑施工影响 下城市运营期隧道水平位移监测数据预测中,采用灰关 联组合预测模型能取得较好的预测结果。

3 总结

本文研究了邻近基坑施工影响下城市运营期隧道水平位移灰关联组合预测模型,探讨了预测模型的建立。采用关联度较高的监测项目建立灰关联组合预测模型进行横向预测,使用回归分析模型、时间序列、灰色系统、BP神经网络建立灰关联组合预测模型进行纵向预测。将各模型预测值与实测数据相对比,表明灰关联组合预测模型横向预测值及纵向预测值与实测值能够较好地吻合,预测效果优于单因素预测模型,精度较高。

参考文献:

[1] 王玉国,梁新华,檀丁,等.基于数据挖掘的基坑监测关联性 分析及联合预报研究[]].全球定位系统,2012,37(05):71-75.

[2] 周红斌. 基于时间序列分析的地铁基坑变形监测数据处理方法研究[D]. 东北大学,2008.

[3] 黄声享, 尹晖, 蒋征. 变形监测数据处理 (第二版)[M]. 武汉: 武汉大学出版, 2010.

[4] 王平卫, 彭振斌, 何忠明. 基于灰色理论的基坑变形预测 [J]. 地质与勘探, 2006, (06):94-97.

[5] 蒋白懿, 叶友林, 李亚峰, 等. 利用灰关联定权组合模型预测城镇给水管道腐蚀速率[J]. 沈阳建筑大学学报(自然科学版),2010,26(02):335-338.