引领无动力超大型 FPSO 装载最大半潜船技术分析

宋雨,李磊,马哲峰,刘峤

(青岛引航站,山东青岛 266011)

摘 要:无动力船舶的引领一直是引航工作的重点和难点,主要是由于无动力船舶不存在任何自航能力,海上航行和靠 离泊作业只有通过拖轮的协助才能完成。本文以引领超大型 FPSO(浮式生产储卸油装置)P67 船体为例,分析此类引 航工作的难点,并给出实操有效的引航作业方式,为今后类似引航作业提供宝贵经验和重要的技术参考。

关键词: FPSO; 半潜船; 拖航; 浮装

中图分类号: U675.98 文献标识码: A 文章编号: 1006-7973 (2025) 05-0127-04

1 引言

超大型 FPSO (浮式生产储卸油装置),又称海上炼油厂,其体积大,水面上设置布置多,造价高,形状差异大。一般由半潜船装载后,运抵指定水域进行定位安装,驳载难度大,进出港操纵难度大,引航风险极大。P67 船体是海油工程首次为巴西国油建造并交付的海工设备,也是其首次作为总承包商为一家海外客户建造的世界最大吨位级 FPSO,P67 的成功交付使中国海油拿到了进军南美浮体市场的入场券,也将进一步增强我国与"一带一路"国家在能源领域的合作,意义重大。

参与装载P67船体的半潜船"BOKA VANGUARD",是目前世界最大的半潜船。将目前世界最大的半潜船。将目前世界最大的FPSO装载到该半潜船上,是一次探索性的引航工程。本文以该次引航作业为例,分析了引航作业前进行的引航方案制定,组织拖轮、码头、船方、港方、海事、航标等多部门参与的引航方案论证[1]等过程,并在顺利完成引航作业后,总结相关经验,为此类船舶引航提供参考。

2 引航作业条件

2.1 船舶主要参数

P67 与"BOKA VANGUARD"主要参数对照表如表 1 所示,示意图如图 1、图 2 所示。

表 1 P67 及 BOKA VANGUARD 型尺度参数表

船名	船长 (M)	船宽 (M)	型深 (M)	吃水 (M)
P67	316	54	23	6.3
BOKA VANGUARD	275	70	15.5/31.5 下潜	10.99

图 1 "BOKA VANGUARD"示意图

图 2 P67 船体示意图

2.2 拖航水域及浮装位置概况

本次拖航的航道主要由三部分组成,分别是中海油基地码头配套航道、海西湾内航道、团岛第一警戒区到浮装位置(第一过驳点)航道,其中,海西湾内航道和第一警戒区至浮装位置航道宽阔,水深足够,不会给本

次拖航任务造成较大困难,但是海油基地配套航道(如图3)宽度只有200米,在使用海图水深5.5米时,航道宽度仅能达到300米,所以为了有足够的航道宽度,需要候潮通过,并且有足够的拖轮协助保证船舶不发生较大的偏荡。

图 3 港池水域及航道分布情况

3 引航方案的确定

3.1 水阻力及风流压力的计算

3.1.1 拖航过程中静水时的阻力计算

根据中国船级社《海上拖航指南》(2011年)附录2: 海上拖航阻力估算方法,被拖物的阻力估算方法按如下 公式估算:

$$R_f = 1.67 A_1 V^{1.83} \times 10^{-3}$$

$$R_B = 0147 \delta A_2 V^{1.74+0.15V}$$

式中: A_1 —水上建筑物的水下湿表面积, m^2 ; V—拖航速度, m/s; δ —方形系数; A_2 —浸入部分的船中横剖面积, m^2 。

通过计算,P67 静水中拖航速度三节时所受阻力为55.6 T。

3.1.2 拖航中流压力的有关计算

根据流压力计算公式:

$$Y_W = \frac{1}{2} \rho_W C_W V_W^2 L d$$

式中; ρ_w —水的密度, kg/m^3 ; C_w —水动力系数; V_w —流的速度, kn_\circ

通过计算, P67 在 1 节流时, 流压约为 38.7 T, 受 2 节流时, 流压力约为 154.9 T。

3.1.3 拖航中风压力的有关计算 根据风压力计算公式:

$$F_a = \frac{1}{2} \rho_a C_a V_a^2 (A_a Cos^2 \theta + B_a Sin^2 \theta)$$

式中: ρ_a —空气密度, kg/m^3 ; C_a —空气动力系数; V_a —风速,m/s; A_a —横截面面积, m^2 ; B_a —侧面积, m^2 。

通过计算,P67 在受正横风 5 级时($10.7\ m/s$),风压力约为 88 T; 受正横风 4 级时($7.9\ m/s$),风压力约为 $50\ T$; 受正横风 3 级时($5\ m/s$),受风压力约 $19\ T$ 。 3.2 浮装水域的选择

本次浮装作业选择在青岛港内锚地一号过驳点进行,该水域受涌浪影响较小,流向稳定,并且以过驳点为圆心,700米半径范围内水深都在20米以上,满足半潜船下潜及应急时对水深的要求。浮装地点如图4所示。

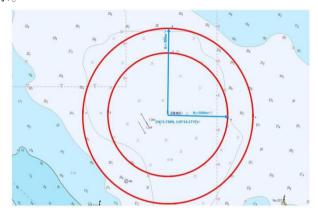


图 4 浮装水域的选择

3.3 拖轮配置

3.3.1 拖轮数量

通过综合考虑拖航过程中所受阻力的大小, 航道自然条件的限制, 以及特殊条件下的应急需要, 充分保证浮装作业的顺利完成, 本次拖航作业安排了六艘大马力拖轮, 总拖力达 418 T, 实际输出为额定的 90%, 总拖力也可以达到 408 T, 足够满足 4 级及以下风时拖航的要求 [2]。

3.3.2 拖轮参数

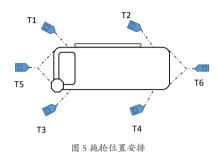

拖轮参数如表 2 所示。

表 2 拖轮参数表

拖轮 名称	拖轮 类型	₭ (m)	宽 (m)	马力(HP)	拖力(T)
T1	z型	37	10.6	5200	61
Т2	Ζ型	37	10.6	5200	61
Т3	z型	37	10.6	5200	61
Т4	z型	37	10.6	5200	61
Т5	z型	40	11	5200	61
Т6	Z型	40	11	8000	96

3.3.3 拖轮位置及发挥的作用

拖轮在拖航时的位置安排如图 5。T5、T6 两艘拖轮参与离码头和拖航的过程中 P67 船体的前进和制动;T3、T4 两艘拖轮参与离码头和航行过程中的 P67 船体的保向和转向,必要时参与加速或制动;T1、T2 两艘拖轮参与 P67 船体的保向和转动,必要时参与加速或制动^[3]。

3.4 引航过程中的风险及应对措施

- (1) P67 船体型深 23 米,吃水只有 6.3 米,甲板上布满了炼油的各种设备及管道系统,设备的高度也达 20 多米,粗略估算其侧面受风面积可达 12000 m²,这就导致 P67 船体受风影响特别明显,风力过大将会给拖航及浮装造成极大的困难,所以根据风压力的估算值,将这次拖航作业的风力限定在 5 级以下,而且拖轮也给予了足够的安排。
- (2) P67 船体的排水量在 80000 T 左右,根据流压力的估算可以看出,流会对其造成很大影响,此外,当 P67 到达浮装地点后,整个浮装过程还需要六小时左右,所以为了充分保障浮装工作的顺利完成,进一步降低工作的风险,浮装工作必须尽可能地选择在小潮汛的白天进行。
- (3)由于 P67 船体甲板炼油设备林立,管道纵横,引航员在甲板上任何位置瞭望,视野都会受到很大的遮挡,所以在 P67 首尾左右两侧都安排了引航员,协助主领引航员瞭望,时时提供相关的航行信息,保证瞭望工作完成的充分准确。
- (4)海工码头配套航道宽度和水深有限,所以要保证 P67 在此段航道中潮高至少为1米,而且拖航的速度不能太快,2节到3节速度较为合适,以便两侧拖轮能够较好地发挥作用,从而保证船体不会产生较大的偏航。
- (5)由于拖航时操纵性能受到极大的限制,根本无法避让来往的进出港船舶,所以港口调度和 VTS 对部分航道进行了暂时的交通管制,同时,主领引航员与引航调度及 VTS 保持通讯的畅通,对周围的通航情况

了然于胸。

- (6)由于 P67 船体没有安装锚,不能在锚地抛锚,一旦由于天气原因或者半潜船产生机械故障导致不能装载时,随时要靠回泊位或者到港外开阔水域拖轮协助漂航,所以在离泊后到装载完毕前泊位保持随时可以靠泊状态。
- (7)其他相关的安全措施:①船厂安排足够的具有海上作业资质以及丰富经验的带缆人员登上 P67,带缆人员分组并且每组组长应该熟悉整个过程的带解缆程序,从而确保带解缆工作安全高效。②提前申请海事局对相关水域进行交通管制,清理海西湾水域的抛锚小船,确保拖带过程航道保持清爽。③引航站按单位应急预案做好准备工作,引航调度负责整个过程的监控工作,及时提供必要的航行信息,保证与海事、轮舶、代理的沟通畅通。

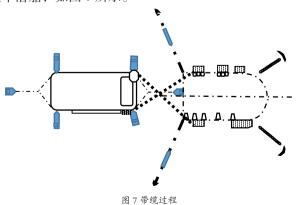
4 实际引航操作

4.1 气象水文状况

根据气象预报,引航当日多云,能见度良,东南偏东风 3-4级;当日潮汐情况如下:从当天潮高的特点可以看出,退水时间 1430 时至 2122 时,退潮时间长达 7小时,潮差不大,说明退水时流速较缓,适合浮装作业,根据潮汐时间,需要将 P67 船体在 1230 时前拖至浮装地点,于 1430 时前装好隔离驳并带好初装的牵引缆,并且做好浮装前的准备。当日潮汐情况如表 3 所示。

高低潮时间 0206 0848 1430 2122 潮高 (cm) 372 94 400 79

表 3 当日潮高与潮时表


4.2 实际工作过程

(1)拖航经过水域及掉头水域设计方案,如图 6 所示。

图 6 航线设计图

- (2)0830时左右在P67船体右舷拖轮(T3、T4)及船头拖轮(T5)带拖后将码头缆绳全部解清,在T3、T4的协助下缓慢离开码头,当离码头距离足够拖轮安全进入时,T1、T2、T6进入带缆,所有拖轮缆绳带好后,在拖轮的协助下P67船体驶向浮装地点。
- (3)通过409号浮时航向维持在035-040左右,由于此处航道狭窄,所以拖带速度以两节左右为宜,便于在发生偏转时拖轮能够及时给予纠正,同时整个拖航过程中,对于P67航行时船位和航向的调整要始终坚持早纠正,用小转向角速率调整的原则,避免P67大幅度转动,从而产生因大幅度偏转不能及时纠正而导致船舶偏航。
- (4)进入海西湾航道后,由于可航水域变宽,适 当地提高拖航的速度至 3-4 节,在一号警戒区转向时注 意控制好转向速率,虽然转向角度比较大,但是此处流 速较快,且 P67 船体重量大,惯性大,所以采取早转向 且以较小的转向速率转向的方案,最终平稳地转到预定 的航向 330-340 左右。
- (5)保持距黄岛油港码头 0.5 海里左右,防止速度慢被流压压向油码头,此处水域宽阔,根据浮装需要选择在此处掉头,让船尾朝向半潜船,掉头完成后将拖航速度增加至 2-3 节,将船位调整到航道中间,不断观察风流合力对船位的影响,将船位保持在最有利于安全的位置缓慢地驶向 P67。
- (6) 距离半潜船 150 米左右时,将 P67 船体完全停住,把 P67 的首尾线调整到与半潜船的首尾线在同一直线上,此时,从半潜船船尾左右两个浮箱上各处两根缆绳交叉与 P67 连接绑牢,装好突出物旁边的隔离驳,随后利用拖轮的拖力和两根缆绳的绞力缓慢地将 P67 拖进半潜船,如图 7 所示。

(7) 当 P67 接触半潜船右舷甲板上的支架时,靠

拢速度要在 2 以内,由于左右两侧距离三脚架和碰垫的 距离仅有 1.5 米左右,所以要求 P67 在发生轻微偏转时 必须马上制止,当 P67 船体的 1/4-1/3 部分进入半潜船 时,此时 P67 首尾受不均匀流场影响最为严重,为了防 止偏转只能在拖轮的协助下沿着半潜船右舷三脚架缓慢 前行,如图 8 所示。

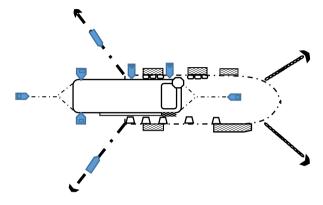


图 8 绞缆及定位

(8)1700 时 左 右,P67 到 达 "BOKA VANGUARD" 装载位置,带好前后主要缆绳后,半潜船开始上浮,此过程中不断用拖轮对P67进行前后位置的微调,1830 时左右P67成功坐底在半潜船上,确定位置毫无问题时,半潜船继续上浮,直到2330时左右半潜船完成上浮工作,整个浮装工作顺利完成。

5 结束语

本文对此次超大型无动力 FPSO 拖航装载半潜船的 过程进行了梳理,一次成功的引航作业需要充足的理论 支持、后勤保障以及作业前的模拟训练,同时,也需要 引航员彼此之间密切配合,才能在作业过程中合理控制 拖轮要素、带缆艇要素、驳载船要素、护航艇要素等的 风险,保证带缆前的航行及带缆过程的船位及船舶态势,以上是引航作业成败的关键。此次引航任务的顺利完成 也为今后类似的引航工作提供了经验和参考。

参考文献:

- [1] 陈正华, 方泉根. 上海港船舶引航风险的分析与预控 [J]. 中国 航海,2009,32(02):68-72+111.
 - [2] 洪碧光. 船舶操纵 [M]. 大连: 大连海事大学出版社,2010.
- [3] 王羲威,徐健,黄先超,等. 圆筒型 FPSO 的出坞及靠泊 [J]. 中国石油和化工标准与质量,2023,43(01):158-160+168.