飞云江瑞安站潮位特征分析

陈政琳¹, 黄伟星¹, 余荣¹, 程翔¹, 陈千富², 蔡侣男³, 朱晓映¹, 彭杨⁴

(1. 瑞安市水利综合管理中心, 浙江 温州 325212; 2. 瑞安市水利工程建设中心, 浙江 温州 325212; 3. 瑞安市水利投资有限公司, 浙江 温州 325212; 4. 浙江水利水电学院水利工程学院, 浙江 杭州 310018)

摘 要: 为掌握飞云江感潮段潮位变化规律,对瑞安潮位站逐时数据统计得到潮汐特征值,运用调和分析方法获得潮汐分量和调和常数。研究结果表明,瑞安站最高潮位和最低潮位分别为 5.01 m 和 -3.04 m; 平均高潮位和平均低潮位分别为 2.58 m 和 -1.83 m,最大潮差和平均潮差分别为 6.84 m 和 4.41 m;设计高、低潮位分别为 2.84 m 和 -1.95 m。瑞安站为浅海河口非正规半日潮特征,具有潮高日不等和涨、落潮历时日不等现象、落潮占优、统计时段内落潮历时比涨潮历时长 2h 左右。

关键词:飞云江;浅海河口;潮位特征;调和分析;日潮不等

中图分类号: U675.12 文献标识码: A 文章编号: 1006—7973 (2025) 05-0115-04

潮汐是指海水在天体引潮力作用下所产生的周期性运动,是发生在沿海地区的一种自然现象^[1]。感潮河段地处海陆交汇地带,受外海潮汐和上游径流的双重影响下,其潮位特征随时空变化较为复杂^[2],其中潮汐类型、潮差、潮汐不等现象等均会对河口航运、防洪排涝工程设计、港口建设等产生重要影响^[3]。因此,掌握感

潮河段潮汐变化特征对河口资源开发与利用、工程建设、防灾减灾和环境保护等具有重要意义。

飞云江为浙江省八大独流入海水系之一,近年来,河口段海塘安澜工程等陆续完成建设和准备启动,感潮段防洪排涝标准得到进一步提升。由于沿江水文观测站 点较少,目前感潮河段只有瑞安潮位观测站在运行,关

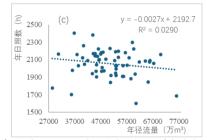


图 9 腊普河流域 1961-2021 年径流量 - 气候因素相关关系散点图

4 结论

- (1)研究区域多年平均降水量为 1115.2 mm,在 1961—2021 年间降水量变化趋势不显著,突变时间发生在 2011 年,近 10 年降水量总体呈下降趋势。
- (2)研究区域平均气温总体呈现上升趋势,受全球气候变暖影响,从 1978年开始,年平均气温始终处于上升趋势,且在 2000年之后一直呈现显著上升趋势。
- (3) 腊普河流域多年平均日照为 2054.0 h, 1992 年之前年日照时数均为上升趋势,从 1992 年开始,年日照时数呈现减少趋势,且 2004—2021 年减少趋势显著。
 - (4)研究区域年径流量从历年看年径流量总体呈

减少趋势, 径流量在研究期内多次突变但变化不显著。

(5)研究发现,降雨量、气温的变化都会影响径流变化,且影响显著,其中,降雨对径流的影响最大,在研究期内是造成研究区径流变化的主要驱动要素。

参考文献:

[1] 吕韶燕, 唐寅, 汤秋鸿, 等. 气候变化对北极勒拿河流域年和季节径流的影响 []]. 地理学报, 2024, 79(11): 2811-2829.

[2]李培月,李清艺,刘伟超,等.气候变化对丹江流域(商州区段)河川径流的影响研究[[/OL].安全与环境工程,1-9.

[3] 邓丽仙,张洪波,和艳,等.气候和土地利用变化下牛栏江中上段地表径流响应研究[J/OL].中国农村水利水电,1-22.

[4] 宋爰英,高秉俊,贺彦.变化环境下黑河上游径流演变规律分析[]]. 水土保持研究,2025,32(02):61-71.

[5] 曹进军, 马海华. 气候和土地利用变化对石羊河流域自然径流的影响 [J]. 中国农业气象, 2024, 45(11):1290-1301.

[6] 魏光辉, 李东泽, 李江. 气候变化对塔河流域河川径流的影响 []]. 黑龙江环境通报, 2024, 37(08):4-8.

[7] 彭俊, 赵宇杰,潘志成,等.1961—2020年黄河中游径流量变化特征及影响因素分析[J].河南大学学报(自然科学版),2024,54(04):419-428.

于飞云江感潮段潮汐特征的研究鲜有报道。本文利用瑞 安潮位站近50年的实测观测资料,对飞云河口潮汐特 征进行分析, 以期为河口资源开发、防洪设计及航运工 程建设等提供理论依据。

1 飞云江及瑞安潮位站概况

飞云江位于浙江省南部, 东经 119° 36'~ 120° 40', 北纬 27°28′~ 28°00′, 流域面积 3719 km², 河长 193 km, 其下游感潮河段长 60.8 km, 受潮汐变化影响较大。

瑞安潮位观测站(建于1944年5月)属于国家基 本水文站,位于东经120°37'6.6",北纬27°47'11.2", 距离出海口 12 km (如图 1 所示)。

图 1 瑞安潮位观测站位置示意图

2 研究方法

为掌握飞云江河口感潮段潮位变化规律, 搜集了瑞 安潮位站 1972 年到 2022 年的潮位数据,包括逐时、逐 潮潮位数据和年月统计数据。对数据逐时统计得到潮汐 特征值,采用高低潮累积频率曲线法对高、低潮累积频 率进行分析,并采用潮汐调和分析方法获得潮汐分量, 基于调和常数及统计结果,分析飞云江瑞安站潮汐特征。 本文所述高程均以1985国家高程为基准。

3 数据处理及调和分析

在瑞安站 1972—2022 年的潮位数据中提取、整理、 并整合为逐时、逐潮数据集, 其时长远大于交点潮、太 阳黑子潮等长周期分潮,满足调和分析要求;逐潮数据 包含 1957—1967 年、2007—2020 年高潮位和低潮位数 据。对逐时和逐潮潮位数据交叉比对验证,逐时数据时 长、完整度、可靠性均满足分析要求。

以瑞安潮位站50年时间序列水位资料为输入,可 计算得到绝大多数天文分潮参数,包括年分潮、半年分 潮等长周期分潮,其调和分析的各分潮振幅和迟角等。

4 实测潮汐特征值的统计分析

4.1 潮汐特征值的统计

对瑞安潮位站 1972-2022 年逐时数据统计得到的 潮汐特征值,如表1所示。

由表 1 可知、飞云江瑞安站近 50 年观测的最高潮 位和最低潮位分别为 5.01 m 和 -3.04 m; 平均高潮位和 平均低潮位分别为 2.58 m 和 -1.83 m, 最大潮差和平均 潮差分别为 6.84 m 和 4.41 m, 呈典型强潮特征; 落潮 时长大于涨潮,落潮占优,平均落潮历时和平均涨潮历 时分别为7小时13分和5小时11分,相差约2h。

4.2 高、低潮累积频率分析

表 2 分别统计了瑞安站逐月最高潮位、最低潮位、 累计频率为50%、10%、5%、1%的高潮位,以及累计 频率为 50%、90%、95%、99% 的低潮位。高、低潮累 积频率曲线如图 2 所示。

由表 2 和图 2 可知,设计高水位为累积频率 10% 的高潮位,设计低水位为累积频率90%的低潮位,对 应的高、低潮位分别为 2.84 m 和 -1.95 m。

表 1 瑞安潮位站 1972-2022 年逐时数据统计得到的潮汐特征值

	最低潮位	-3.04
	平均大潮低潮位	-2.02
	平均低低潮位	-2.06
	平均高低潮位	-1.60
	平均小潮低潮位	-1.65
	平均低潮位	-1.83
潮位 (m)	平均海平面	0.38
	平均高潮位	2.58
	平均小潮高潮位	2.35
	平均低高潮位	2.42
	平均高高潮位	2.75
	平均大潮高潮位	2.97
	最高潮位	5.01
	最小潮差	0.96
潮差 (m)	最大潮差	6.84
	平均潮差	4.41
涨、落潮历时	平均涨潮历时	5:11
(hh:mm)	平均落潮历时	7:13

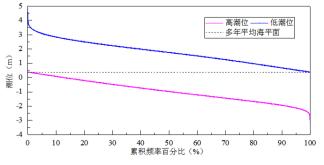


图 2 高、低潮累积频率曲线(1972-2022)

表 2 瑞安站逐月高、低潮累积频率 (单位: m)

月份 平均海平面		低潮			高潮						
万切 干场海干面	最低潮位	50%	90%	95%	99%	最高潮位	50%	10%	5%	1%	
1月	0.30	-2.79	-0.96	-1.91	-2.11	-2.38	3.98	1.66	2.69	2.94	3.31
2月	0.28	-2.71	-0.96	-1.93	-2.09	-2.34	3.88	1.62	2.73	2.98	3.33
3月	0.29	-2.84	-0.98	-1.98	-2.13	-2.35	4.05	1.65	2.81	3.05	3.42
4月	0.29	-2.73	-1.02	-2.00	-2.17	-2.39	3.74	1.69	2.77	2.99	3.34
5月	0.33	-2.88	-1.04	-2.00	-2.19	-2.44	3.90	1.75	2.73	2.94	3.34
6月	0.37	-3.04	-1.06	-1.98	-2.20	-2.50	4.37	1.81	2.74	2.98	3.40
7月	0.35	-2.96	-1.06	-2.02	-2.22	-2.54	4.56	1.79	2.78	3.03	3.47
8月	0.45	-2.92	-0.97	-1.97	-2.15	-2.43	5.01	1.83	2.95	3.20	3.67
9月	0.56	-2.62	-0.89	-1.88	-2.04	-2.29	4.80	1.87	3.09	3.35	3.74
10月	0.55	-2.76	-0.86	-1.82	-2.00	-2.25	4.53	1.85	3.05	3.31	3.69
11月	0.43	-2.73	-0.93	-1.86	-2.06	-2.33	4.11	1.77	2.85	3.09	3.48
12月	0.33	-2.87	-0.96	-1.90	-2.12	-2.40	3.80	1.71	2.69	2.94	3.32
全年	0.38	-3.04	-0.97	-1.95	-2.12	-2.40	5.01	1.75	2.84	3.09	3.51

5 潮汐调和分析

瑞安站潮汐以天文潮为主,采用调和分析方法计算,公式如下^[4]:

$$H(t) = Z_0 + \sum_{i=1}^{j} H_i \cos(w_i t - \Psi_i) + \Delta H(t)$$
 (1)

式中,H(t)为某时刻的潮位, $m; Z_0$ 为平均海面,m; t为时间, $h; H_i$ 为第 i 个分潮振幅, $m; \Psi_i$ 为第 i 分潮的相位,o ; w_i 为第 i 分潮的频率,1/h, $w_i = 2\pi/T_i$, T_i 为第 i 分潮的周期,h; i 和 j 分别为分潮序号和总数; $\Delta H(t)$ 为随机增(减)水,m。

如令所要求的潮位为 $H_P(t)$ ^[5]:

$$H_{P}(t) = Z_{0} + \sum_{i=1}^{j} H_{i} \cos(w_{i}t - \Psi_{i})$$
 (2)

式中, $H_P(t)$ 为某时刻的预报潮位, m_o

根据上述公式计算得到天文潮分量(如表3所示), 潮位实测值与计算进行对比,如图3所示。

表 3 瑞安站潮汐调和分析结果

分潮	周期 (h)	振幅 (m)	迟角 (°)
M ₂	12.42	1.982	81.7
S ₂	12.00	0.616	-31.0
N ₂	12.66	0.332	-4.0
K ₂	11.97	0.174	127.6
K ₁	23.93	0.261	-130.7
O ₁	25.82	0.190	5.9
Q ₁	26.87	0.032	-79.4
P ₁	24.07	0.066	-111.2
M4	6.21	0.198	94.2
M ₆	4.14	0.041	-26.2
MS ₄	6.10	0.164	-22.6

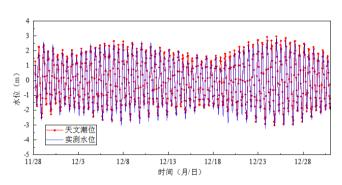


图 3 瑞安站潮汐调和分析结果与实测水位对比

由图 3 可知,调和分析结果与实测潮位吻合较好。瑞安站最高天文潮为 3.89 m,最低天文潮位为 -2.84 m。飞云江瑞安站潮汐相邻高潮或低潮的高度不等,涨、落潮历时也不等,属于非正规半日潮。

6 潮汐特征分析

6.1 潮汐类型

潮汐在河口浅水区域会受到边界条件影响而发生变形,常采用以下公式定量计算 [6]:

$$G = H_{M_4}/H_{M_2} \tag{3}$$

式中,和为浅水 1/4 日分潮 (M_4) 与半日分潮 (M_2) 的振幅,m; G 为浅水分潮与半日分潮振幅的比值,反映潮汐受到浅海影响的程度,当 G>0.04 时,表明受浅水分潮影响显著。

将表3相关参数代入上述公式计算可知,*G*值为0.1,大于0.04,表明瑞安站潮汐变形显著,受浅水分潮影响明显,具有浅海河口非正规半日潮特征。

6.2 潮差

潮差特征主要通过平均潮差和最大可能潮差来反 映,采用如下公式计算[7,8]。

 $\overline{\Delta H} = 2.02 H_{M_2} + 0.58 H_{S_2}^2 / H_{M_2} + 0.08 (H_{K_1} + H_{O_1})^2 / H_{M_2} (4)$ $\Delta H_{Mptr} = 2(1.29H_{S_2} + 1.23H_{M_2} + H_{K_1} + H_{O_1})(5)$

式中, $\overline{\Lambda H}$ 和 ΔH_{Mptr} 分别表示平均潮差和最大可能 潮差, m; H_{S_2} 、 H_{K_1} 和 H_{0_1} 为半日分潮(S_2)、全日分潮(K_1 、 01)的振幅, m。

经计算得瑞安站平均潮差为 4.12 m, 最大可能潮差 为 7.37 m。通过调和分析结果计算的平均潮差与通过实 测资料分析得到平均潮差值(4.41m)较为接近。

6.3 潮汐的日潮不等

对于潮高日不等,常采用如下公式计算[9]:

$$T_1 = H_{S_2} / H_{M_2} \tag{6}$$

$$G_1 = g_{M_2} - (g_{K_1} + g_{o_1}) \tag{7}$$

式中, T_1 为半日分潮振幅 (H_{S_2} 和 H_{M_2}) 的比值; $g_{\rm M_2}$ 、 $g_{\rm K_1}$ 和 $g_{\rm O_1}$ 分别为半日分潮(M₂)和全日分潮(K₁、 0_1) 对应的迟角, 。; G_1 为半日分潮(M_2) 迟角与全日 分潮 (K_1, O_1) 迟角和的差值, 。。

当 T_1 ≥ 0.4时,则可以判定存在明显的潮高日不 等现象。当 G_1 值在 0° (或 360°)左右时表示该处潮 位呈现出高潮日不等; 当 G_1 值在 180° 左右时表示该 处潮位出现低潮日不等; 当 G_1 值在 270° 左右时则表 示该处潮位存在高潮和低潮均日不等现象。经计算,瑞 安站 T_1 值为 0.31, 小于 0.4, 表明该站呈现较不明显的 潮高日不等现象。 G_1 值为 206.5°,接近 180°,因此, 瑞安站潮汐存在低潮日不等现象,采用如下公式计算[10]:

$$G_2 = 2g_{M_2} - g_{M_4} \tag{8}$$

式中, g_{M_4} 为浅水 1/4 日分潮(M_4)对应的迟角,。; 为 2 倍的半日分潮(M₂)迟角与 1/4 日分潮(M₄)迟角 的差值,。。

经计算, G_2 值为 69.2° , 在 90° 左右, 表明落潮 历时大于涨潮历时,落潮流占优,统计时段内落潮历时 比涨潮历时长 2 h 左右, 计算结果与实测分析结论一致。

7 结论

根据瑞安站潮位观测资料,分析飞云江河口强潮段 潮差、高低潮位特征以及天文潮变化规律等。得到的主 要结论如下:

(1) 飞云江瑞安站近50年观测的最高潮位和最低 潮位分别为 5.01 m 和 -3.04 m; 平均高潮位和平均低潮 位分别为 2.58 m 和 -1.83 m, 最大潮差和平均潮差分别 为 6.84 m 和 4.41 m, 呈现出典型的强潮特征。

- (2)瑞安站设计高水位为累积频率10%的高潮位, 设计低水位为累积频率90%的低潮位,对应的高、低 潮位分别为 2.84 m 和 -1.95 m。由近 50 年潮位观测资 料和调和分析计算得到瑞安站最高天文潮和最低天文潮 位分别为 3.89 m 和 -2.84 m。
- (3)瑞安站潮汐受浅水分潮影响明显,变形显著, 具有潮高日不等和涨、落潮历时日不等现象, 表现出浅 海河口非正规半日潮特征。瑞安站落潮历时大于涨潮历 时,落潮流占优,统计时段内落潮历时比涨潮历时长 2 h 左右, 调和分析结果与实测值吻合较好。

参考文献:

- [1] 陈宗镛. 潮汐学 [M]. 北京: 科学出版社,1980:1-4.
- [2] 赵晨澄, 杨友健, 白直旭. 瓯江流域感潮河段潮位变化趋势分 析[]]. 陕西水利,2022,(07):1-5+11.
- [3] 王立杨,桑金,乔守文,等.渤海沿岸4个验潮站潮汐特征分 析 []]. 海洋湖沼通报,2020,(04):23-29.
- [4] 刘倩, 孙小淇. 青岛港潮汐的调和分析与预报 []]. 海洋气象学 报,2022,42(02):99-106.
- [5] 石景元,张功瑾. 舟山海域潮汐特征及调和分析精度研究 []]. 海洋技术学报,2022,41(03):83-89.
- [6] 黄燕,李妍清,汪青静,等.湄公河感潮河段潮汐特征分析[C]// 中国水利学会.2022中国水利学术大会论文集(第五分册).黄河水 利出版社,2022:431-438.
- [7] 黄祖珂, 黄磊. 潮汐原理与计算 [M]. 青岛: 中国海洋大学出 版社,2005:235-236.
- [8] 吴德安, 严以新, 马林艺, 等. 江苏辐射沙洲海域最大可能潮 差的计算与分析 []]. 大连海事大学学报,2008,34(04):75-78.
- [9] 成印河,梁广建,朱凤芹,等.粤西沿岸海域潮汐特征[]].海 洋科学,2017,41(06):111-118.
- [10] 孙维康, 周兴华, 冯义楷等. 山东沿海潮汐的时空特征分析 [J]. 海洋技术学报,2018,37(04):68-75.