散货港口中转计量精度技术的管理与应用

张炜

(华能太仓港务有限责任公司, 江苏 苏州 215434)

摘 要:港口中转计量是港口企业重要的技术技能工作,是港口生产的重要环节,是做好煤炭清洁高效利用指标的计量 手段。做好港口中转计量工作,对于保证港口安全质量、提高生产率、节能减排、加强经济核算、促进港口现代化建设 均具有重要意义。本论文以华能太仓港务有限责任公司自 2019 年以来整治中转计量设备及增强中转计量管理水平的历 程,对如何管理和应用港口中转计量精度技术进行分析研究。

关键词:港口:散货码头:中转计量:精度:偏差分析

中图分类号: [U6-9] 文献标识码: A 文章编号: 1006-7973 (2022) 09-0051-04

港口中转计量科学管理是散货港口企业生产经营、 创新发展可靠保障的基石,中转计量精度与计量设备健 康水平、港口计量运行管理水平密切相关,记录统计分 析中转计量过程的特征,揭示其规律,提高港口中转计 量精度。

港口计量科学管理基础须更加坚实,数据体系须更加完善,服务保障能力须显著提高,制度须更加健全,监管须更加规范。在确保港口安全生产、促进港口经济发展、煤炭清洁高效利用等方面发挥重要的技术保障作用。

1 煤炭港口中转计量及相关生产设备治理

港口中转计量水平与计量设备、生产设备健康水平 密切相关,设备治理为港口中转计量工作打下了坚实基础。

1.1 中转计量设备改造治理

- (1)组织实现现场皮带秤远程控制,统一其通信协议,实现上位机的集中管理。
- (2)软件上实现皮带秤的双秤比对、远程调零、 标定、数据比对、偏差报警等功能,提高了计量自动化 水平。

5 总结

本文结合交通运输应急管理体系构成要素以及应急流程,建立了包含7个一级指标、34个二级指标、50个三级指标的交通运输应急管理评价指标体系。指标体系需与交通运输应急实际紧密结合,才能保障科学性和实用性,并且需不断运用才能更加完善。在今后的研究和工作中,将不断进行运用,积累经验,对交通运输应急管理指标体系进行更新和完善。

根据交通运输应急管理工作实际,结合应急管理理 论,开展交通运输应急管理指标体系研究,提出覆盖全 面的交通运输应急管理指标体系,确定应急管理指标评 价方法,为交通运输应急管理体系建设提供支撑。

目前,本文设计的指标体系在《国务院办公厅关于加强水上搜救工作的通知》的实施效果评估中进行了运用,评价结论与实际情况相符,验证了指标体系的合理性和有效性。但由于目前指标体系应用还不广泛,指标设置和评价标准的合理性、操作性还有进一步提升空间。在今后的研究和工作中,将结合交通运输应急管理的发

展以及指标体系应用实践,对交通运输应急管理指标体系进行更新和完善。

参考文献:

[1] 孙静. 美国交通运输应急管理研究及启示 [J]. 大众标准化, 2021(03): 187-189.

[2] 熊高峰.广州海上搜救应急管理能力评估研究 [D]. 暨南大学, 2016.

[3] 王小娟. 道路交通应急能力评价研究 [D]. 北京交通大学, 2011.

[4] 吴森.民用运输机场应急管理能力系统评价研究 [D]. 中国民航大学, 2016.

[5] 许秋生. 铁路企业突发事件应急管理研究 [J]. 企业科技与发展, 2019(12): 295-296.

[6] 翁大涛. 交通运输应急管理体系研究[J]. 中国水运(下半月), 2017, 17(01): 57-59+62.

基金项目:中央级公益性科研院所基本科研业务费项目(20190508)

(3)减少现场环境影响: 秤架移位来减少钢结构 振动;通过皮带秤段封闭来避侧风对皮带扰动。

1.2 相关生产设备改造和维护

- (1)皮带机配重小车改造解决了大皮拉紧张力影 响。
- (2) 对沿线的犁煤器、翻板梳理检查,解决流程 中漏煤、翻板有不到位情况,确保流程设备健康运行。
 - (3) 对沿线皮带跑偏的情况进行了治理。

2 港口中转计量运行科学管理和措施

构建中转计量运行科学管理模式、中转计量运行数 据的科学统计,利用特征理论系统地分析了港口中转计 量技术技能管理,建立数据链溯源体系,从数据中提取 出偏差因素,如煤炭品种、特征船舶导致的偏差,丰富 计量管理经验,提高港口整体管理水平。

2.1 煤炭港口中转计量运行管理存在的问题

通过对其他煤炭港口的调研得知:有些港口安装高 精度计量器具,单秤运行,计量结果完全依赖于设备, 没有专业数据分析,设备故障或运行问题,计量质量无 法保障;有些港口虽然使用双秤运行方式,没有过程管 理和综合分析:有些港口对外声称客户反响"很好", 实质将计量设备成为"聋子的耳朵",人为地进行中转 数据调整。

港口企业存在对港口中转计量运行管理的认识不 足,认为可有可无等问题,港航联运又以水尺计量结果 为依据进行结算,故而忽视了港口中转计量运行管理的 重要性。

我们需要认识到提高港口中转计量运行管理水平 至关重要。各企业中转计量运行数据的统计与分析,还 没有一个成熟规范的模式,各自用自己的方式进行统计, 存在"重设备、轻管理"的意识,只是片面地记录数据, 为整体的管理工作埋下不利的伏笔。只有通过科学、专 业、系统地分析实践,"去伪存真",提炼成专业理论, 形成专业管理体系,将会对港口中转计量工作起到科学 管理、科学发展的积极作用。

2.2 培养科学专业公正敬业的品质

中转计量运行工作需要具有"科学、专业、公正、 敬业"的品质,计量专业严格要求工作每一个步骤必须 有科学依据,每一个数据都必须真实,对数据负责,对 企业负责。培训计量员,不断提高业务水平和科学公正 的责任心, 计量数据存档, 所有积累的数据为今后特定 分析、溯源提供可靠的依据。

2.3 健全相关制度和培训资料

2019年, 华能太仓港务有限责任公司制定的《煤 炭码头中转计量运行管理规定》是一线作业实践中不断 总结形成理论制度的结果,是具有港口实践特点的计量 运行管理办法,扭转"只要中转量,忽视中转计量"的 思想,提高了计量班技能水平和业务能力。

2.4 科学优化计量工艺

在实践中善于不断摸索优化计量工艺,标定作业安 排在接卸清舱阶段、大皮更换后拉伸恢复自由状态后标 定等等, 优化计量工艺措施为生产作业效率和计量精度 提高提供了条件。

为避免低流量计量数据的流失,在海轮清舱阶段采 取卸船机料斗装满后再放料,确保低流量计量信息不流 失,提高计量精度。

2.5 中转计量数据的统计与分析

运用科学的统计方法,对中转作业的数据进行分 析,其中有对单秤单班的微记录、微分析,也有月记录 和月分析, 以及年记录、年分析, 形成一整套的数据全 记录, 进而对凸显的数据链特征进行科学、实事求是地 分析, 使数据显现的偏差特征, 发现问题, 解决问题, 使计量管理水平得到提高。

3 中转数据链溯源

中转计量数据为溯源提供前提条件,数据人为的改 动、作假,对隐匿的设备问题、不当利益问题都不能体 现出来,有特殊原因造成的修改,如设备故障,要有制 度走流程, 记录在档。数据的真实性就是科学性。真实 的数据不一定是正确的计量数据,但真实的偏差计量数 据能够体现某一环节出现的问题,如设备故障,通过查 找原因,通过技术手段复原故障导致的偏差,恢复真实 数据。

3.1 港口中转计量运行数据的科学性

"科学、专业、公正、敬业"是从事港口中转计量 运行工作的灵魂。通过计量数据统计分析,检验了设备 运行管理、计量数据精确性,不断积累"船舶、堆场计 量实践经验",扭转计量只管皮带秤数据的局限性,拓 宽计量工作的思路,以大计量、全方位、全流程的思路, 确保"进港"与"出港"数据的安全可靠,并落实责任, 维护客户及企业利益。依据计量历史数据提前做好偏差 预判, 实现全过程管理。

3.2 提高港口中转堆场计量管理水平

进出场由于天气、煤炭品种、自燃而造成的数据链 突变,造成客户货物运输损耗、运力成本提高的矛盾。

图 1 煤炭进场地和皮带输送煤炭现场

煤炭发热产生大量的水汽,在堆垛四周有白色的蒸 汽环绕;中转过程中,皮带上方的蒸汽散发大量的水分。

图 2 堆场煤炭自燃的情形

煤炭进场大量水气蒸发,自燃煤炭、连绵雨水、酷暑晴好天气作业时,加大煤炭的计量偏差,是影响计量的主要因素。

3.3 港、航、企中转数据链

由于每一条海轮的作业方式以及每一个运行班的 作业流程的不一样,所以计量系统皮带秤的使用和使用 时间是随机的,在这种千变万化的计量设备使用状态下, 港口计量要适应这种使用状态,每一台秤偏差特性都不 能大,否则整个港口计量系统偏差就会明显显现,所以 对每台秤的精度都是有着整体精度要求使用下的更为精 准的计量偏差。每台秤的使用和精度不能独善其中,相 互之间是相互印证,相互制约的。

由于煤炭运输中转,终端客户电厂的计量系统相对 简单,它对大数据样本的统计和分析比对的效果是有局 限性的,除通过自身计量校验外,还需要一个数据大平 台进行对应和修正,港口数据是电厂数据很好的参照和 比对。

航运公司每条船是个体,它具有单独的计量特性, 在公共码头的计量系统大数据样本下,它的特征将会体 现出来,每一条船反复来港,系统性偏差就会留下痕迹。港口数据同样是船舶计量的很好参照和比对。

港口是中转数据链的中间环节,数据承上启下,他 上接发货港来单数和航运公司水尺数,同时又会下接分 流船装船荷载和客户企业皮带秤数据,对应上下游数据, 所以在这个大平台上,港口数据的收集量是非常丰富的, 港口具有自身数据的一个检验,以及对上下游数据的复 核和收集功能。在整个中转数据链正常状态下,数据在 某个环节不会有突变,装卸船作业抛洒、扬尘的损耗是 有限的,会有合理的运输损耗,但不会造成数据的突变, 一旦有突变,是会有明显特征外因所致的,所以这对我 们的数据链溯源是起到一个很好的帮助。

突变因素是我们研究分析,减少港、航、企计量数据链异常的重要工作,也是减少货物中转矛盾的和采取措施的切入口。

3.3.1 特征船舶、外贸海轮、首次来港船舶的统计分析 表1A海轮接卸计量统计表

船名	来单数	电子秤	水场	水水	偏差 (‰)
A 海轮	60753	60470	0	60470	-4.66
	57186	56877	0	56877	-5.40
	57483	56780	0	56780	-12.23
	57734	57633	0	57633	-1.75
	57709	57231	57231	0	-8.28
	60509	60226	0	60226	-4.68
	57649	57257	18826	38431	-6.80
	57261	56962	0	56962	-5.22

表2B海轮接卸计量统计表

船名	来单数	电子秤	水场	水水	偏差 (‰)
B海轮	56606	57384	57384	0	13.74
	53171	54066	0	54066	16.83
	53519	54117	0	54117	11. 17
	54694	55258	55258	0	10.31
	53851	54286	54286	0	8.08

如表 1 所示, A 海轮接卸计量持续副偏差, 亏吨; 如表 2 所示, B 海轮接卸计量持续正偏差, 盈吨。

部分海轮由于某些原因,自身具有计重偏差特性,持续正偏差或者负偏差,我们称之"特性船舶"。进而证实"特性船舶"、"外贸海轮"的装载数据偏差,是接卸偏差超±5%的主要影响因素,5%之内偏差数据绝对值的平均值为2.29%,也就是来单数与皮带秤数偏差在2.29%。

表 3 2020 年度接卸数据统计分析表

海轮接卸 (条)	2**条	占比 (%)	特性船舶 (条 /%)	首次来港 (条/%)	外贸海轮 (条 /%)	其余 (条 /%)
±5%以内	1**条	70%				
±5%到 ± 10%	6捺	25%	3*/13.93%	8/3. 28%	1*/4.1%	9/3.69%
±10%以外	1條	5%	6/2.46%	2/0.82%	4/1.72%	0
备注	2020年1月1日至12月31日海轮接卸共计2**条。					

表 4 2021 年度接卸数据统计分析表

海轮接卸 (条)	3**条	占比 (%)	特性船舶 (条	首次来港(条	外贸海轮 (条	其余 (条/
±5%以内	3**条	92%	/%)	/%)	/%)	%)
±5%到± 10%	2*条	6%	1*/2.92%	4/1.17%	2/0.58%	5/1.46%
±10%以 外	1*条	3%	3/0.87%	2/0.58%	3/0.87%	3/0.87%
备注	2021年1月1日至12月31日海轮接卸共计3**条。					

如表 3、表 4 所示, 2020 年、2021 年度接卸数据 统计分析表,从中看到"特性船舶"、"外贸海轮"、"首 次来港"的非正常偏差所占比例,从而可以筛选出系统 误差船舶,为港口中转计量运行管理制定提供重要参考。

论证特性船舶的系统偏差等创新性课题,排除"特 性船舶"、"外贸海轮"、"首次来港"的非正常偏差, 其中"特性船舶"为系统偏差,2019-2021年公司海轮 接卸计量偏差(发货港来单数与中转港皮带秤数据偏差) 低于 2.5‰(去除非正常偏差、系统偏差),中转计量 工作质量稳定,全年未发生进出场计量误差导致的增加 转运船舶额外运力或超装减载情况。

3.3.2 煤炭品种、堆场煤炭自燃对港口中转计量的影响

褐煤的煤化程度较低, 褐煤如此高的水分是由于褐 煤表面与水分子之间的相互作用的结果。[1] 这些作用力 包括煤孔隙结构中水分子的表面张力、水分子和煤结构, 与环境的影响很有关系。由于褐煤煤化程度低,内水丰 富,全水分高达20%~50%。

雨水旺季, 褐煤入场与出场数据正增长的突变情 况;发生自燃的煤炭、天气持续晴好情况下,入场与出 场计量数据负增长的突变情况,明显反映特殊煤种受外 界天气因素影响,导致的进出场数据发生重大变化的现 象。

掌握入场煤炭品种特性, 关注相关的季节气候天 气,在中转计量运行中,充分考虑其因素,提前考虑、 设计科学合理的中转计量技术措施、减少负偏差场出场 损和减少正偏差场出中转运力的增加,提高科学中转计 量质量水平,增强中转计量工作科学管理的自信。

4 结论

在港口中转计量科学管理下,皮带秤计量有稳定的 精确度,为进一步研究港航中转数据链提供理论基础和 技术支持,数据可溯源,保护各方重大经济利益。稳定 可靠管理下的中转计量运行数据精度会高于水尺精度,

成为与水尺检验齐头并进的散货计量手段,相互验证, 为散货中转计量精准化提供更有力的保障,构建适应生 产、贸易偏差要求的全流程中转计量运行管理模式,并 在此基础上实现数据链特征数据的挖掘和利用,为港、 航、企中转计量数据链提供更好的支持条件。为建设绿 色安全型、智慧服务型港口和质量效益型、创新驱动型、 煤炭清洁高效起到企业基础支撑和先行保障作用。

加强港口中转计量科学管理基础前沿和应用技术 的研究, 统筹规划港口计量标准发展, 开展港口计量相 关学科、专业及课程建设,完善港口计量人才培养机制, 着力培养高水平的港口计量专家。计量运行管理标准化、 计量精度精准化,成熟的中转计量和诚信体系,为推动 港口科技进步、经济发展提供重要的技术基础和保障。 以理论、科技、机制、制度和文化创新、促进计量建设 和发展,发挥散货中转计量技术对港口创新的支撑和引 领作用。

参考文献:

[1] 张大洲, 卢文新, 陈风敬, 夏吴, 左静, 王志刚, 商宽祥. 褐 煤干燥水分回收利用及其研究进展 []]. 化工进展 ,2016,35(02):472− 478.DOI:10.16085/j.issn.1000-6613.2016.02.019.

