BIM 技术在道路桥梁工程运用的研究现状

张继伟,杨贵华,陈星宇,张星江

(云南交投集团云岭建设有限公司,云南 昆明 650051)

摘 要:随着道路桥梁的不断建设,对管理和质量的要求提升。传统管理手段已无法适用于现代化建设中,BIM 技术 具有众多优势,在道路桥梁方面的应用已成为必然趋势。本文主要对现阶段道路桥梁工程特点及管理现状进行总结。分 析了主流 BIM 软件在道路桥梁方面的应用特点及对比,发现 Bentley 软件对于桥梁 BIM 建模具有突出优势。此外,总 结了 BIM 技术在桥梁方面的应用优势并列举了具体实例佐证。为今后 BIM 技术在道路桥梁方面的应用提供了重要参考 作用。

关键词: 道路桥梁; BIM 技术; Bentley; 管理

中图分类号: U445 文献标识码: A 文章编号: 1006-7973 (2022) 08-0142-04

近年来,我国交通建设领域快速发展,据交通运输 部运输统计 2019 年我国桥梁建设数目为 87.83 万座, 约 6063.46 万米。随着桥梁数量的不断增长,对于桥梁 的耐久性、承载力、经济效益的要求随之提高。在我国 现阶段的桥梁建设中,桥梁工程设计和构造主要依托 CAD (计算机辅助设计)软件完成,但在整个周期内会 出现不同管理之间沟通协作不当的情况, 这阻碍了桥梁 后期运营的有效开展,严重影响了桥梁耐久性和使用 寿命使其减短,促使养护成本增加等风险提高[1,2]。而 BIM(建筑信息模型)技术在桥梁工程中运用不仅可以 满足建筑行业现代化建设,而且可以达到信息集成化, 满足桥梁工程"构建设计"-"施工管理"-"养护维修" 三位一体化,提高实际工程的安全性^[3,4]。目前,BIM 技术在道路桥梁工程方面应用并未完全成熟,在应用方 面还有较高的进步空间。本文梳理了 BIM 技术在桥梁 工程运用的现状, 旨在为后续桥梁工程设计和建模中提

供部分参考和指导作用。

1 道路桥梁工程特点及管理现状

1.1 特点

道路桥梁属于线性控制工程,相较于其他建筑行业 具有一定特殊性,施工场地占地面积大、组织复杂,其 特点主要为[5]: ①投入资金数量大, 工程质量要求高。 在项目实施过程中需要大量资金投入,且对于桥梁使用 年限有高的要求(使用年限一般为100~120年)。②施 工程序复杂,工程周期长。由于桥梁种类繁多,如:拱 桥、斜拉桥、梁式桥和组合桥等,不同种类的桥在施工 建设中程序差别明显,随着跨度、体量的不同,施工的 复杂程度也有所调整。相对应的工期也随之延长。③多 方合作共同施工,环境复杂多变。在桥梁的施工中需要 不同部分协同配合,如:设计单位、施工单位和监理单 位等。此外,大部分桥梁施工环境艰苦,面对复杂的地

5 结束语

在长三角一体化整合的大背景下,上海船舶制造业 从蓬勃发展转向高附加值技术密集型方向发展; 从黄浦 江沿岸向崇明岛、长兴岛、外高桥沿岸转移; 从中小型 船舶向大型、超大型船舶发展。由于国外疫情的失控, 相较之下疫情的传播在我国得到切实的阻断, 使得我国 船厂复工复产早,迎来了难能可贵的转型时间窗口,把 握住时代给我们创造的机遇。然而,这却给水上通航安 全带来了不小的压力。在通航密度如此之高的环境下, 把住安全这道关是每个驾引人员和海事监管部门面临的

一道难题。他山之石,可以攻玉。上述进出崇明水道的 操纵要领及操作上的心得,希望能给大家以启发,提高 水上交通安全率,助力长江经济带的高质量发展。

参考文献:

[1] 房希旺, 胡建国, 杲庆林. 船舶操纵 [M]. 大连海事大

[2]程炳富.超大型散货船崇明岛出口的操纵[J].中国水 运,2009(5).

[3] 周弘文引航创新工作室. 上海港引航操纵汇编 []].2019.

势、气候等不可控因素增多,加大施工难度。

1.2 管理现状

随着施工技术多样化和复杂化,加剧了桥梁建设的难度,从施工场地布置、管理进度和信息三个方面总结了施工管理现状。①场地资源配置不合理。施工方通常采用二维纸质方案进行交底,不利于多方的协同工作和技术交流,且在施工处多出现物料堆放随意,设备使用不规范等,造成施工效率低。②进度管理采用传统方法。传统的管理手段有横道图、网络计划、关键链等,施工进度控制手段有 PDCA 循环、S形比较法。这些方法在实际施工中控制性较差、关联性低。不利于管理人员对实际工程的熟悉掌握。③信息流通闭塞。小型工程可以采用施工记录表进行报告,但在大型或复杂项目中,依然采用相同的方式会造成多方人员无法信息共享,数据滞后和对接不通顺等,严重影响施工进程。

2 主流 BIM 软件在道路桥梁的应用对比

2.1 Autodesk

Autodesk 的主要软件包括 Revit(该软件侧重单体设计方向,可以对道路桥梁的部分内容进行精细化处理);Infraworks(该软件侧重于道路桥梁设计的可行性和前期设计部分,提供方案的对比择优);Dynamo(该软件通常用于较为复杂结构的设计,一般和 Revit 软件配合使用);Navisworks(该软件可以对建好的模型进行拼装,并效验正确与否和施工进度等)。Autodesk 软件操作较为简单适合新手但不适用于复杂曲面的设计。各软件之间存在的关系见图 1 所示。

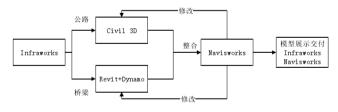


图 1 Autodesk 在道路桥梁工程的应用 [4]

2.2 Bnetley

Bentley 软件在适用于多个领域,如:地理、土木、工厂和建筑等。软件以 Micro Station 为主,针对道路桥梁方向研发了三种专业性较强的软件: Openroads Designer 及 Conceptstation(道路)、Openbridge Modeler(桥梁)。历经上述软件的处理后,可以建立起桥梁/道路的基本结构模型,然后利用 LumenRT 软件对上述模型进行可视化处理,比如针对模型进行动画和效果图的渲

染等。最后运用软件 Synchro 4D 进行施工进度管理安排,该软件功能较强即便在大型的复杂工程建设中,也能准确发挥作用。Bentley 软件中各部分细化的软件应用见图 2 所示。

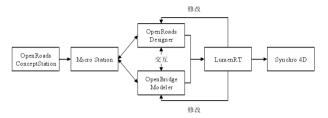


图 2 Bentley 在道路桥梁工程的应用 [4]

2.3 Dassault

Dassault 软件主要应用于机械和航空领域,其核心软件为 CATIA^[6]。相较于前两种软件,这款软件的特色和优点是参数化建模能力较为突出,使用者可以根据自己的参数要求,建立体量较大的较为精确的模型,且可以针对模型细节进行修改。王达^[7] 研究表示 Dassault 软件可以为构建好的模型实时修改和更新提供良好的支持。针对道路桥梁方面,可以通过流程"骨架-模板-实例"构建桥梁模型,结合模板/构件库的信息进行扩展填充,用户选择需要的参数进行模型建立,较为精确地模拟和运算。

2.4 对比分析软件 Autodesk、Bentley 和 Dassault

前三小节主要介绍软件Autodesk、Bentley和Dassault的核心软件及建构模型时的特点,为了明确三种软件如何选择应用,给读者更直观的选取,本文对上述三种软件进行对比,见表1所示。

表 1 软件 Autodesk、Bentley 和 Dassault 的优缺点

软件名称	优势	不足	应用领域
Autodesk	操作简单,适合初学者使用,	该软件不能设计较为复杂	工民建行业
	软件功能界面设计清楚合理。	的曲面结构。由于子软件	
	有关学习资料和相关视频内容	较多,有些没有建立优化	
	较多。二次开发借口较开放,	对接,造成数据交换出现	
	拥有众多安装及使用人员。	问题,格式不统一等。	
Bentley	软件以 Micro Station 为基	软件推广力度不足,且该	大体量工程项
	点,针对不同专业侧重设计点	软件操作技术性较强不适	目、综合性较
	有所调整,但架构平台、数据	合新手,很难在短时间内	高、较为复杂
	格式对接合适。对大体量工程	熟练操作。网上发布的学	的工程
	构建模型和综合性复杂模型友	习资料有限,掌握难度大	
	好, 可以实现项目全程可视化	大提高。建立整个项目工	
	管理。	程模型时间成本增大。	
Dassault	软件处理建模速度快,对于信	操作复杂,专业人员和工	航空航天、汽
	息管理等有明显优势。可以处	程对接不能同步,软件价	车、机械及仪
	理大体量模型,对于地形等模	格昂贵不适合广泛应用。	器
	型细节化处理精确,对其进行	建立完整模型效率较低,	
	开挖模拟和用量计算。	软件难以掌握时间成本	
		高。人机交互界面差。	

从表1中可以看出,三种软件都具有各自的优势、不足,因此应用领域也有所不同。综合来看,软件

Bentley 操作较为简单,可以支持在大体量工程和综合性较强的复杂工程中应用。在 BIM 技术分支与道路桥梁实际应用中优势突出。

3 BIM 技术在桥梁工程的优势及具体运用

3.1 优势

Bortolini 等^[8] 研究发现 4D-BIM 技术运用于较为复 杂的施工现场,可以提高其物资管理的效率,此外,还 能降低人力管理成本, 是实现施工规划和控制的有效措 施。刘延宏 [9] 也得到了相似的结论,他在桥梁工程中结 合了 BIM 设计,结果发现该工程管理效率提高了 25% 左右。刘亚飞^[4]表示在道路桥梁施工管理中运用 BIM 技术的优势在于: ①有利于优化施工场地的布置[10]。 BIM 技术应用可以较为直观掌握施工过程的布置情况, 节约施工过程中的时间和经济成本。②协调进度管理 [11]。主要是 4D-BIM 技术的建模, 其在 3D 模型的基础 上,将工程进度的计划性、管理可视化变为可能。③集 成施工信息[12]。将实际工程中的信息和 BIM 模型进行 集成,采用 BIM 技术记录施工中的详尽信息,且为管 理人员提供沟通协作的平台,有利于工程顺利完成。卢 晓^[13] 认为将 BIM 技术应用于施工中,在成本管理方面 优势突出,除了软件本身兼容性好,较为高效和协调性 高。国家也在积极鼓励行业内对 BIM 技术的学习和应用, 早在 2016 年, 我国就将 BIM 技术列在了"十三五"— 建筑行业重点推广的首位,在 2019 年政府部门频频推 出 6 次文件用于推进 BIM 技术的应用,可见政府注重 BIM 技术的发展和与实际工程结合的态度。在运用 BIN 技术的企业中,也发现 BIM 带来的项目优势,数据显 示[14], 使用 BIM 技术的项目平均工期减少 10%, 收益 更是可以取得60%以上,实现了成本低速度快的发展 趋势。

3.2 具体应用

孙煜煌^[15]运用 BIM 技术结合到桥梁工程中,从可行性研究、设计和施工、运维等阶段进行讨论,为 BIM 技术在工程施工方向提供思路。如图 3 所示。在不用的阶段,构建的信息模型和精度等级都是可控的,采用动

态的方式。相较于二维设计, BIM 模型可以提供完整的 施工所需数据信息, 降低施工过程中不可控因素出现时 带来的波动。

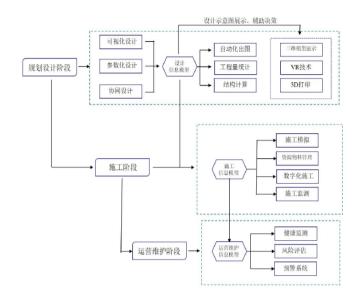


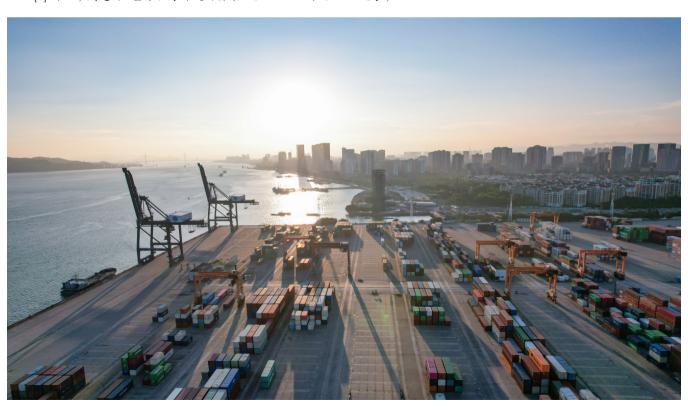
图 3 BIM 技术在桥梁中的应用 [15]

世界上跨度最大的钢筋混凝土拱桥—北盘江大桥项目,施工方就采用了 BIM 技术对大桥进行了设计以及后续的安全监控等,采用 BIM 技术的数字化拼装发现前期设计工作的错误并进行修改,通过 4D-BIM 可视化指导施工现场,且及时收集模型和实际工程中生成的数据和文档,使得如此大规模的工程得以呈现。

李阳^[16] 将 BIM 技术运用在了京杭大运河省道 268 特大桥中,采用 Bentley 软件构建了基础结构典型构件的参数化数据库,在模拟施工工艺的基础上提出了优化,为大型桥梁耐久性和后期运营维护管理提供参考价值。

4 结论与展望

本文主要结论和展望如下:


- (1) 道路桥梁工程要求较高,传统的管理可能导致资源配置不合理、进度不明和信息化较低问题的出现。 BIM 技术可以有效解决上述道路桥梁问题的出现。
- (2)介绍了主流 BIM 软件 Autodesk、Bentley 和 Dassault 的特点,并对比三种软件的优缺点,最后综合分析得到,软件 Bentley 具有应用到桥梁工程的突出优势,其他软件都有较大发展空间。

- (3) BIM 技术在应用过程中优势明显,有利于物资管理效率提高、管理进程可视化和集成施工信息。此外,在多个大型道路桥梁中得以应用,并取得良好效益。
- (4) 我国对于 BIM 技术结合在大型桥梁工程中的 实际应用缺乏,虽然 BIM 技术拥有众多优势并取得一些研究成果,但还需要长时间地研究和弥补不足。制定 相关标准规范有助于 BIM 技术的普及应用。

参考文献:

- [1] 刘秀, 余文成, 夏诗画. 基于 BIM 的桥梁异形构件参数化设计研究 []]. 公路交通技术, 2020,36(05):76-82.
- [2] 李枝军,张金康,韩晓楠,等.基于BIM技术的全预制混凝土梁桥施工进度动态预测及应用[J].南京工业大学学报(自然科学版),2021,43(03):351-357.
- [3] 梁宏顺, 吴福居. BIM 技术在大型桥梁施工中的应用 []]. 科技创新导报, 2018,15(32):33-34.
- [4] 刘亚飞. BIM 技术在公路桥梁施工模拟及监测中的应用研究[D]. 石家庄铁道大学, 2020.
- [5] 黄玮征,董宇路,张锡霖.BIM技术在跨内河航道桥梁拆除施工中的应用研究—以上海浦星公路桥工程为例 [J]. 土木建筑工程信息技术,2019,11(05):36-42.
 - [6] 陈旺, 戴建国. 基于程序开发的桥梁工程 BIM 正向设

- 计研究 []]. 土木建筑工程信息技术, 2020,12(06):6-11.
- [7] 王达. BIM 技术在桥梁全生命周期中的应用研究 [D]. 吉林大学, 2018.
- [8] Bortolini R. Site logistics planning and control for engineer-to-order prefabricated building systems using BIM 4D modeling[J]. Automation in Construction, 2019,98(1):248-264.
- [9] 刘延宏. 基于 BIM+GIS 技术的铁路桥梁工程管理应用研究[]]. 交通世界(运输,车辆), 2015(09):30-33.
- [10] 李勇, 汪俊. 桥梁工程设计中 BIM 技术的具体应用 []]. 公路交通科技(应用技术版), 2019,15(07):187-189.
- [11] 张晓, 蔡瑞瑞. BIM 技术在桥梁工程全生命周期中的应用[]]. 市政技术, 2019,37(04):93-94.
- [12] 秦晓晗, 谢来坤. BIM 技术在"智慧交通"桥梁工程中应用[]]. 公路交通科技(应用技术版), 2020,16(02):156-158.
- [13] 卢晓. BIM 技术在桥梁工程成本管理中的应用研究 [D]. 河北经贸大学, 2021.
- [14] 唐海燕. 基于 BIM 技术的工程施工成本预测方法研究与应用 [D]. 江苏大学, 2016.
- [15] 孙煜煌. BIM 技术在桥梁工程中的应用研究 [D]. 西南交通大学. 2019.
- [16] 李阳. BIM 技术在桥梁工程中的应用研究 [D]. 东南大学, 2018.

